Epithelial-Mesenchymal Transition (EMT) in lung fibrosis: a core determinant of epithelial-mesenchymal crosstalk

Yihua Wang

yihua.wang@soton.ac.uk Biological Sciences, FELS, University of Southampton

2021 Novogene NGS Forum

21 Oct 2021

Héctor Peinado, David Olmeda and Amparo Cano

Jean Paul Thieru* and Jonathan P. Sleeman[‡]

Epithelial-Mesenchymal Transitions in Development and Disease

Idiopathic pulmonary fibrosis (IPF)

- A progressive fibrotic disease limited to the lungs
- > 5000 cases/year (UK)
- Incidence is increasing
- Median survival from time of diagnosis 3 years

http://patienttalk.org/category/fibrosis/

ABSTRACT

Alfred Hospital and Prince Chal

QLD (PMH)

versity of Miar

cine, Miami (N

Medical Cent

bia Universi

(DJL): Inov

VA (S.D.N

Federal U

(CAP)

olina, Cr

System

In two of three phase 3 trials, pirfenidone, an oral antifibrotic therapy, reduced From the University of disease progression, as measured by the decline in forced vital capacity (FVC) or vital capacity, in patients with idiopathic pulmonary fibrosis; in the third trial, this end point was not achieved. We sought to confirm the beneficial effect of pirfeni-

done on disease progression in such patients.

In this phase 3 study, we randomly assigned 555 patients with idiopathic pulmonary in this phase 3 study, we failuonity assigned 353 particles with supporting Particular fibrosis to receive either oral pirfenidone (2403 mg per day) or placebo for 52 weeks. The primary end point was the change in FVC or death at week 52. Secondary end points were the 6-minute walk distance, progression-free survival, dyspnea, and death from any cause or from idiopathic pulmonary fibrosis.

In the pirfenidone group, as compared with the placebo group, there was a relative reduction of 47.9% in the proportion of patients who had an absolute decline of NJ (R 10 percentage points or more in the percentage of the predicted FVC or who died; to percentage points or more in the percentage of the predicted evel of ward under to Do there was also a relative increase of 132.5% in the proportion of patients with no the decline in FVC (P<0.001). Pirfenidone reduced the decline in the 6-minute walk Par distance (P=0.04) and improved progression-free sirvival (Pc0.001). There was no significant between group difference in dyspnea scores (P=0.16) or in rates of death from any cause (P=0.10) or from idiopathic pulmonary fibrosis (P=0.23). However, in a prespecified pooled analysis incorporating results from two previous phase 3 trials, the between-group difference favoring pirfenidone was significant for death trials, the between group unrefere takening price more way senificant for deach from any cause (P=0.01) and from idiopathic pulmonary fibrosis (P=0.006). Gastro intestinal and skin-related adverse events were more common in the pirfenidon group than in the placebo group but rarely led to treatment discontinuation.

Pirfenidone, as compared with placebo, reduced disease progression, as refle by lung function, exercise tolerance, and progression-free survival, in patients idiopathic pulmonary fibrosis. Treatment was associated with an acceptable effect profile and fewer deaths. (Funded by InterMune; ASCEND Clinica'Tri

number, NCT01366209.)

The NEW ENGLAND JOURNAL of MEDICINE MAY 29, 2014 Efficacy and Safety of Nintedanib in Idiopathic VOL. 370 NO. 22 Luca Richeldi, M.D., Ph.D., Roland M. du Bois, M.D., Ganesh Raghu, M.D., Arata Azuma, M.D., Ph.D. uca Richeldi, M.D., Ph.D., Roland M. du Bois, M.D., Ganesn Kagnu, M.D., Arata Azuma, M.D., Ph.D. Kevin K. Brown, M.D., Ulrich Costabel, M.D., Vincent Cottin, M.D., Ph.D., Kevin R. Flaherty, M.D., Kevin K. Brown, M.D., Ulrich Costabel, M.D., Vincent Cottin, M.D., Ph.D., Kevin R. Flaherty, M.D., Ph.J. Kevin K. Brown, M.U., Umch Costaber, M.U., Vincent Cottin, M.D., Ph.U., Kevin K. Flanerty, M.U., David M. Hansell, M.D., Yoshikazu Inoue, M.D., Ph.D., Dong Soon Kim, M.D., Martin Kolb, M.D., Ph.D., David M. Hansell, M.D., Hosnikazu Inoue, M.D., HILD., Dong Soon Kim, M.D., Marun Kolo, M.D., Hiloviki Taniguchi, M.D., Ph.D., Andrew G. Nicholson, D.M., Paul W. Noble, M.D., Moisés Selman, M.D., Hiroviki Taniguchi, M.D., Ph.D., Michele Brun, M.Sc., Florence Le Maulf, M.Sc., Mannaig Girard, M.Sc., Susanne Stowasser, M.D., Michele Brun, M.Sc., Florence Le Maulf, M.Sc., Mannaig Girard, M.Sc., Susanne Stowasser, M.D., Rozsa Schlenker-Herceg, M.D., Bernd Disse, M.D., Ph.D., and Harold R. Collard, M.D., BACKGROUND

Annaous Address are lated in the authors' affiliations are lated in the authors' Affiliations are lated in the authors' Address and the authors' A multiple tyrosine kinases. A phase 2 trial suggested that treatment with 150 mg of Appendix Address reprint requests for introducible suitor. An its reduced Association dealing and content with 150 mg of Dr. Richeldi at the National Institute for patients with idiopathic pulmon ary fibrosis. We conducted two replicate 52-week, randomized, double-blind, phase 3 trials

(INPULSIS-1 and INPULSIS-2) to evaluate the efficacy and safety of 150 mg of nintedanib twice daily as compared with placebo in patients with idiopathic pulmonary fibrosis. The primary end point was the annual rate of decline in forced vital capacity (FVC). Key secondary end points were the time to the first acute exacerbation and the change from baseline in the total score on the St. George's

A total of 1066 patients were randomly assigned in a 3:2 ratio to receive nintedanib

or placebo. The adjusted annual rate of change in FVC was -114.7 m! with nintedanib Dot 10.1056/NGM02102354. Dot 10.056/NGM02102354. Copy of Control of Control of Copy of Control of Co expacedo, the adjusted annual fate of change in two was 111. Its mich mich announce westus -239.9 ml with placebo (difference, 125.3 ml; 95% confidence interval [CI], 77.7 to 172.8; P<0.001) in NPULSIS-1 and -113.6 ml with nintedanib versus -207.3 ml with placebo (difference, 93.7 ml; 95% CI, 44.8 to 142.7; P<0.001) in INPULSIS2. in INPULSIS-1, there was no significant difference between the nintedan ib and placebo groups in the time to the first acute exacerbation (hazard ratio with nintedanib, 1.15: 95% CI, 0.54 to 2.42; P=0.67); in INPULSIS-2, there was a significant benefit with nintedanib versus placebo (hazard ratio, 0.38; 95% CI, 0.19 to 0.77; P=0.005). The most frequent adverse event in the nintedanib groups was diarrhea, with rates of 61.5% and 18.6% in the nintedanib and placebo groups, respectively, in INPULSIS-1 and 63.2% and 18.3% in the two groups, respectively, in INPULSIS-2.

In patients with idiopathic pulmonary fibrosis, nintedanib reduced the decline in

PVC, which is consistent with a slowing of disease progression; nintedanib was frequently associated with diarrhea, which led to discontinuation of the study medication in less than 5% of patients. (Funded by Eochringer Ingelheim; INPULSIS-1 and INPULSIS-2 ClinicalTrials.gov numbers, NCT01335464 and NCT01335477.)

N ENGLI MED 170-22 NEW.ODG MAY 20. 2014

Dr. Richeldi at the National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Mailpoint 813, LE75 E Level, South Academic Block University Hospital Southampton NHS Foundation Trust, Tremona Rd., Southampton SOI6 6YD, United Kingdom, or at Lricheldi@soton_ac.uk.

*A complete list of investigators in the INPULSIS trials is provided in the Supplementary Appendix, available at NEJM.org.

This article was published on May 18, 2014.

Copyright © 202 4 Massachungts Medical Society

PABAred Oditive Jej 28,2000 Hegy(2640-gd) 12673-3099(2430-gl):53.x	Lung thoross: an undervalued finding in COVID-19 pathological series with the COVID-19 pandmit having mashed transmission proportion, pair with the COVID-19 pandmit having mashed transmission product in the templan marger with the position of the templan templane that the standing pathogenetic features and pathogenetic features and pathogenetic features and themselves in patients with COVID-19 membership on new textment strategies with an encouplement strategies.	Between April 16, and May 4 2000, we collected larg structure cargin s cryokology approximation for the data patients in our weth COVD 10 (specification) and the second with COVD 10 (specification) and the data for a mean disease duration of 31.3 days (150 Sa), a much longer duration of illness then reported in the which the mean times from symptom compared to death was 16 days (200 6). Tissues obtained by cryokology are comparable to speciments from free patients as the procedure is down marked fibrotis. Ling parenchymal remodelling, characterised by fibroblast proliferation, a impace obliteration, a dimen charger	An more parthological information is being callected from (VOP)-S3 post- metras, maint, a boson part back-tool in- ternational and the second part of the second information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of the information of the second part of the second part of
San Chilos for agaestik	In the Article, Luce Cartona and colleague' devices the long finding of 28 patients who did with UNU 19 and who tut early phase or intermediate phase diffue a long tanget in the minimum phase of the stranget in the minimum phase sectors and the stranget of the stranget sectors and the stranget of the stranget sectors and the stranget sectors and the stranget of the flower, charged sectors have been however, only briefly touched goon of brain strangets of the stranget pathological description of these cases in available.	combing many of the available combined on the second second second second second the second second second second second second second Preventible the flore trajection of the the patients with second COVID 13 who remember that the second COVID 13 who remember the second COVID 13 who remember the second COVID 13 who remember that the second COVID 13 who remember that the second COVID 13 who flore that the second COVID 13 who remember that the second second second flore that the second second second second second flore the second second second second second second flore the second second second second second second flore the second	Tell Standback (and pains a liberation) in the Alexandron Alexandron and Alexandron (1997). In St. Kanddack, Alexandron and Alexandron (2007). If the alexandron and the alexandron and the alexandron and the alexandron and the alexandron and the alexandron (2007). If the alexandron and the alexandron and the alexandron and the alexandron and the alexandron the alexandron and the alexandron an

medicine

FOCUS | REVIEW ARTICLE

Post-acute COVID-19 syndrome

Ani Nalbandian ()1.24, Kartik Sehgal ()2.342452, Aakriti Gupta ()1.56, Mahesh V. Madhavan ()1.5 Claire McGroder 07, Jacob S. Stevens⁸, Joshua R. Cook 09, Anna S. Nordvig 010, Daniel Shalev¹¹, Tejasav S. Sehrawat 12, Neha Ahluwalia¹³, Behnood Bikdeli^{4,5,6,34}, Donald Dietz¹⁵, Caroline Der-Nigoghossian¹⁶, Nadia Liyanage-Don¹⁷, Gregg F. Rosner¹, Elana J. Bernstein¹⁹ Sumit Mohan[®], Akinpelumi A. Beckley¹⁹, David S. Seres²⁰, Toni K. Choueiri^{®2,3,4}, Nir Uriel¹, John C. Ausiello⁹, Domenico Accili⁹, Daniel E. Freedberg²¹, Matthew Baldwin¹⁰, Allan Schwartz¹, Daniel Brodie 07, Christine Kim Garcia7, Mitchell S. V. Elkind 010,22, Jean M. Connors 4,23, John P. Bilezikian^o, Donald W. Landry^a and Elaine Y. Wan 121

Severe call registratory mathematic constraints (IGME-CAV.2) is the product rescarable for the conversion disease 2019 (2010): PH9 production, each has necessite all glade hashine vertices and strateging the basiltoness rescarable patients recovering from COVID-PB grows, it is paramount to stabilish an understanding of the basiltoness inners arrowing them. COVID-PH9 proves, it is paramount to stabilish an understanding of the basiltoness inners arrowing them. COVID-PH9 proves, it is paramount to stabilish and understanding of the basiltoness inners arrowing patients recovering the star and understanding production of the stabilish stability to part-scale value space of the stability of part-scales productions of the stability of the stability of part-scales datapart for the stability of part-scales productions of paramount of the stability of part-scales as long basility datapart of long-term complications beyond 4 weeks from the sinse of symptoms. Here, we provide a comprehensive svice of the current literature to OUID-PH and the condiminist management through declared COVID-PH or the literation of the stability of the literation.

Set of the contrast of the production of the set of the

Topological Calculatory, Department of Muddres, Vaperia Calego of Hystician and Segrems, New Yoh Thoulyaney Caurities University Innov Muddre Sales (Segrem Muddres) (Segrem Sales) (Segre

```
NATURE MEDICINE | VOL 27 | APRIL 2021 | 601-615 | www.rat
```

6 **OPEN ACCESS**

Additional suncio

terial is published onlin

only. To view, pieze visit the journal online (http://dx.dol. org/10.1136/thoraxjni-2021-217031).

Medicine/PACC, Columbia

University Irving Medical Center, New York, New York, USA

¹Radiology, Columbia University Medical Center, New York, New York, USA

fork, USA "Radiciogy, Internal Medicine, and Biomatical Engineering, University of lows Carvor College of Medicine, Iowa City, Jowa, USA

Iowa, USA Biostatistics, Columbia University Medical Center, New York, New York, USA "Institute of Genomic Medicine, Center for Precision Medicine and Genomics, Columbia University Intring Medical Center, New York, NY, USA

Correspondence to Dr Christine Kim Garch

Automotory and Critical Care Medicine, Columbia Universi

Iving Medical Center, New Y NY 10032-3784, USA;

MRB and CKG are joint senior

Received 5 February 2021 Revised 6 April 2021 Accepted 13 April 2021

ARSTRACT

INTRODUCTION

The risk factors for development of fibrotic-like

ures of frailty, but not with dysproea.

Reports of hospitalised COVID-19 survivors show that there are persistent symptoms, radiographic abnormalities and physiological impairments months after the initial illness.^{1 2} Persistent chest imaging abnormalities and histopathological find-

ings of lung fibrosis were also found in a majority of survivors of the SARS-CoV-1 2003 outbreak.34

or survivors or the SARS-COV-1 2005 outpreak, suggesting that the SARS vicuses may lead to a worse fibroprolifectarive response than other pneumonias. Cohort studies of COVID-19 survivors report that severity of the initial illness is associated with a

that sevently of the initial illness is associated with a greater cisk of persistent CT abnormalities, ¹²³⁶ espe-cially for patients requiring supplemental oxygen or mechanical ventilation, but independent clinical, biomarker and genomic risk factors have not been

identified. Also, the extent to which CT findings correlate with symptoms and physical function remains unclear. To address knowledge gaps, we

Pulmonary fibrosis 4 months after COVID-19 is associated with severity of illness and blood leucocyte telomere length

Claire F McGroder,¹ David Zhang,¹ Mohammad A Choudhury,¹ Mary M Salvatore,² Belinda M D'Souza,² Eric A Hoffman,³ Ying Wei,⁴ Matthew R Baldwin O, Christine Kim Garcia O 1.5

and 15 May 2020 who required supplemental oxygen. At 4 months after hospitalisation, participants underwent a non-contrast high-resolution chest CT (HRCT) scan, pulmonary function testing radiographic abnormalities after severe COVID-19 are Incompletely described and the extent to which CT findings correlate with symptoms and physical function measurement of 6-minute walk distance (6MWD), assessment of the frailty phenotype and a blood draw for isolation of genomic DNA. Radiographic after hospitalisation remains unclear At 4 months after hospitalisation, fibrotic-like patterns were more common in those who underwent mechanical ventilation (72%) draw tor solation of genome DNA. Kadiographic patterns were categorised and quantitated using a severity scoring system developed by ARDSnet and used in acute respiratory distress syndrome (ARDS) survivors,² and classified into two groups (non-fibrotic or fibrotic). Fibrotic-like patterns included than in those who did not (20%). We demonstrate that severity of initial illness, duration of mechanical ventilation, lactate dehydrogenase on admission and leucocyte telomere length are independent risk factors for fibrotic-like radiographic abnormalities. These fibrotic-like changes correlate with lung function, cough and those with reticulations, traction bronchiectasis or honeycombing. Telomere length of genomic DNA isolated from blood drawn at the 4-month follow-up visit was measured by a quantitative PCR. assay." We calculated Spearman's cank correlation coef-

ficients between continuous data. We created sepa-rate generalised additive logistic models (GAMs) to test adjusted associations between the risk of fibrotic-like patterns on CT scan and independer continuous variables identified in univariable analcontinuous variables identified in univariable anal-ysis. Due to the moderate cohort size and rate of fibrotic-like radiographic abnormalities, we used generalised covariate balanced propensity scores to adjust for potential confounders. We estimated adjusted ORs using logistic regression models if there was no evidence of non-linearity.

RESULTS We enrolled 76 patients meeting eligibility crit

we encoded to patients meeting engouing criteria (online supplemental figure 51); demographic and clinical features are shown in online sapplemental awygen during hospitalisation, and 32 (42%) required mechanical ventilation. A median of 4.4 (IOR 4.0-4.8) months after talisation, the most common radiographic

matton Vol 397 January 16, 2021

conducted a prospective cohort study of survi-vors hospitalised with severe COVID-19, half of whom were mechanically ventilated, with 4-month Check for updates

Articles

>@[↑] ● 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study

Initiary", Laetinary, Yening Wary, Salti', LB Ber, Xioying Gar, Jargtany, LiCar, Minish', Xing Zhou, Berfeng Le Ini Huary Shengin Tu, Niezhou Li Chen, Deaithi, Iranjing Li, Cahang LL a Peng Yong Li, Wuxlang Xie, Dan Cui, Lianhan Shang Ir An, Hyang Su, Geng Wang, Ying Wang, Jingchuan Zhang, CamWang, Janweri Wangt, Dingur Zhangt, Bin Cart

a 201; 197:2019 Tadigeound The long-term health consequences of COVID-19 remain largely unclear. The aim of this study was to runner down describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and many 4.2021

Intrastor the maximum in matchic parameters and only of parameters with confirmed COVID-19 who had been discharged from Jin Tra-tan Hospital (Wuhan, China) between Jin 7, 2020, and May 29, 2020. Patients who died before discharge patients for whom filless-way would be difficult blaceaus of parchedus disorders, demendia, or no effects and the discharge data to be context-tan and the only of the discovery discharge data to the second base starts and the discharge data to be context-tan and those lines quantitation of which only and the difficult blace theory and the discharge data to be context-tan and those lines quantitation and the second start discharge data to be context-tan and those lines quantitation and the second start discharge data to be context-tan and those lines quantitation and the second start discharge data to be context-tan and those lines quantitation and a start discharge data to be context-tan and those lines quantitation and a start discharge data to be context-tan and those lines quantitation and a start discharge data to be context-tan and those lines quantitation and a start discharge data to be context-tan and those lines quantitation and the start and the start discharge data to be context-tan and those lines quantitation and the start and the start discharge data to be context-tan and the start discharge data to be a start discharge data to be context-tan and the start data to a start discharge data to be a start data to be a start discharge data to be start data to data s hang M Di, and Dep Clinic Of LIM Q 2

The second seco

Interpretation A1 6 months after acute infection, COVID-19 survivors were mainly troubled with fatigue or muscle weakness, sheep difficulties, and anxiety or depression. Patients who were more severely ill during their hospital stay had more severe impaired pulmonary diffusion capacities and abnormal chest imaging manifestations, and are the main target population for intervention of long-term recovery.

WangM.S, J Zh Prof. JWang Pl ong MA, SILING Funding National Natural Science Foundation of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, National Key Research and Development Program of China, Major Projects of National Science and Technology on New Drug Creation and Development of Pulmonary Tuberculosis, and Peking Union Medical College Foundation. us, GWang, YiWang, JZhon

120

Repro. Copyright @ 2021 Elsevier Ltd. All rights reserved

www.thelancet.com Vol 398 August 28, 2021

3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study

Xisojan Wu", Xisofan Lir", Y liv Zhou", Hongving Yu", Rolyun L", Qingxuan Zhar", Fang Ni, Si Fang Yang Lu, Xuhong Ding, Halling Li Robal Ewing, Mark G Janest, Y Hirt, Hanxiang Niet, Yihaw Wang

Badgrown The consequences of COVID-19 in those who recover from acute infection requiring hospitalisation have set to be clearly defined. We aimed to describe the temporal trends in respiratory outcomes over 12 months in patients hospitalised for severe COVID-19 and to in estigate the associated with factors. Attempt of the severe to the severe to the severe the severe the severe the severe the severe to the severe May 5 2025

Reprint nor were CVF110-2 and to interlight the autochter Int LEXES. Here the second s

notorga Bereven Fell Sand March 31, 2020. e135: eligible patients, 201 (e158) patients patients patients patients patients and years (1028 – 20, 6). Trapped Integration and years and years (2018 – 2018 ings Between Feb 1, and March 31, 2020, of 135 eligible patients, 83 (61%) patients participated in this study. The

Interpretation In most patients who recovered from severe COVID-19, dyspnoca scores and exercise capacity improved over time; however, in a subgroup of patients at 12 months we found evidence of persistent physiological and radiographic change. A unified pathway for the respiratory follow-up of patients with ICOVID-19 is respirated.

Funding National Natural Science Foundation of China, UK Medical Research Council, and National Institute for Health Research Southampton Biomedical Research Centre

Articles

€*

lances Earnith of th

nitr of

HTEMO, KUND, X Ding MD,

∌@∿®

1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study

Lbere Huang", Qun Yao", Xiaoying Gu", Qiangya Wang", Liß Rin", Yeming Wang", Ping Hu", Li Gud", Minit Ju, Juyang Xu, Xuoyang Zhang, Yali Qu Yang Ing Fan, Xia Li Gafrong Li, Ting Yu, Jiaan Xia, Ming Wel, Li Chen, Yanping Li, Fan Xiao, Dan Liu, Jianwel Wangt, Xiang wangt, Bin Caof

Andreword The full range of long-term health consequences of COVID-19 in patients who are discharged from terms of the patient of the start of the s

Are there is a multifered and cohort study of COVID.19 survives who had been discharged from meansatured pin Tota the Isophil (Wuhan, China) letteres jun 7 and May 25, 2020. At second and Linearchi follow ap vice, server a very interview with quantitations on approximation and the Total Quality of High (RQL), and contrast the the Isophil of the CovID and the Co models were used to evaluate the risk factors of 12-month outcomes.

Findings 1226 COVID-19 aurvivors completed both visits. The median age of patients was 59-0 years (IQR 49.4.6.7.1. and 631 (S35) verse mes. The median follow-up time was 185.6 days (IQR 175.4.138.6 of for the foremedian ideal of the state of the state

mobility, pain or disconfiet, and minity or depression, and had more provident symptoms than did controls. Interpretation Machine (COVID 3) on or on that a good physical and functional recovery during by part follows up, and had been the symptom section of the symptom sect

neturnel to their original work and the . rate mean near the series of t

Introduction

Introduction increasing concern. In our previous cohort study with measurement states, the state of the state of the state of the states of th

increasing concern. In our previous cohort study with Meteor Labo

IPF pathogenesis remains poorly understood

Dysfunctional epithelium

- Genetic susceptibility
- Ageing
- Recurrent microinjury

- Activation of epithelial cells
- Basement membrane disruption
- Dysregulated signalling
- Immune activation

Charlotte Hill¹, Mark G. Jones^{2,3}, Donna E. Davies^{2,3,4} and Yihua Wang^{1,4*}

Bioinformatics identify EGFR activation in IPF

1	P value	Q value	Pathway	Source
(6.76 x 10 ⁻⁸	2.13 x 10 ⁻⁴	EGFR1	NetPath
-	1.05 x 10 ⁻⁶	1.62 x 10 ⁻³	FoxO signaling pathway - Homo sapiens	KEGG
3	1.54 x 10 ⁻⁶	1.62 x 10 ⁻³	Amoebiasis - Homo sapiens	KEGG
3	3.11 x 10 ⁻⁶	2.45 x 10 ⁻³	Interleukin-6 signaling	Reactome
	6.73 x 10 ⁻⁶	3.94 x 10 ⁻³	Hemostasis	Reactome
3	7.51 x 10 ⁻⁶	3.94 x 10 ⁻³	Leptin	NetPath
1	1.93 x 10 ⁻⁵	8.69 x 10 ⁻³	Extracellular matrix organization	Reactome
	2.41 x 10 ⁻⁵	9.50 x 10 ⁻³	p53 signaling pathway - Homo sapiens	KEGG
4	4.55 x 10 ⁻⁵	1.57 x 10 ⁻²	Leptin signaling pathway	Wikipathways
5	5.00 x 10 ⁻⁵	1.57 x 10 ⁻²	MAPK1 (ERK2) activation	Reactome
	6.00 x 10 ⁻⁵	1.72 x 10 ⁻²	Thyroid hormone signaling pathway - Homo sapiens	KEGG
2	7.23 x 10 ⁻⁵	1.87 x 10 ⁻²	ECM-receptor interaction - Homo sapiens	KEGG
	9.32 x 10 ⁻⁵	1.87 x 10 ⁻²	Platelet activation - Homo sapiens	KEGG
9	9.60 x 10 ⁻⁵	1.87 x 10 ⁻²	Retinoblastoma (RB) in Cancer	Wikipathways
1	1.81 x 10 ⁻⁴	1.87 x 10 ⁻²	Alpha6Beta4Integrin	NetPath
	1.81 x 10-4	1.87 x 10 ⁻²	Ectoderm Differentiation	Wikipathways
1	1.83 x 10 ⁻⁴	1.87 x 10 ⁻²	EGF-EGFR Signaling Pathway	Wikipathways
:	2.25 x 10 ⁻⁴	1.87 x 10 ⁻²	Toxoplasmosis	Wikipathways
2	2.49 x 10-4	1.87 x 10 ⁻²	Polycystic Kidney Disease Pathway	Wikipathways

SnapShot: Ras Signaling

Megan Cully and Julian Downward

Cancer Research UK London Research Institute, London WC2A 3PX, UK

ORIGINAL RESEARCH published: XX 2021 doi: 10.3389/fmolb.2021.595712

Quantitative Proteomic Analysis in Alveolar Type II Cells Reveals the Different Capacities of RAS and TGF- β to Induce Epithelial–Mesenchymal Transition

Yilu <mark>Zhou ^{1,2†}, Charlotte Hill^{1†}, Liudi Yao¹, Juanjuan U¹, David <mark>Hancock³, Julian Downward</mark>³, Mark G. Jones^{2,45}, Donna E. Davies^{2,45}, Rob M. Ewing¹², Paul Skipp^{1,2,6}* and Yihua Wang^{1,2,5}*</mark>

EGFR-RAS activation induces EMT in ATII cells (2D)

Type II ER:KRAS V12

ZEB1 is up-regulated in IPF lungs

Figure 4

Franco Conforti

Global transcriptomic changes in fibroblasts exposed to conditioned media from RAS-activated ATII cells

regulation of cell migration	negative regulatio of cell migration cell migration	negative regulation of locomotion	regulation of cellular response to growth factor stimulus response to growinflamma binding	cytokine binding cytokine binding cytokine cytokine torypfactor transforming	forming in factor receptor naling thway platelet-derived growth factor wth factor point factor signaling imulus pathway ve regulation negative	regulation of cel differentiation cell differ	negative Il regulation of cell differentiation
regulation of locomotion	positive regulation of cell migration	consitive gulation of comotion comotion comotion cell motilit	negative regulation of cellular response to growth factor stimulus	factor beta recept cellular response to growth factor stimulus	uin-like n factor signaling hway JONSE to bkine isgnaling athway signaling pathway regulation of fibroblast growth factor receptor signaling pathway	positive regulation of cell differentiation	ell differentiation
extracellu	extracellular organizati Ilar matrix and co	matrix on Ilagen extracellula	regulation of ce	Il proliferation	positive regulation of cell proliferation	cell adhesion	regulation of cell inflammatory adhesion
extracellular matrix structural constituen		matrix matrix binding stituent collagen trimer	negative rec cell prolif	gulation of eration	cell proliferation	negative regulation of cell adhesion	ative cell adhesion regulation of adhesion response inflammatory molecule binding

Paracrine signalling during ZEB1-mediated EMT augments local myofibroblast differentiation in lung fibrosis

Paracrine signalling during ZEB1-mediated EMT augments local myofibroblast differentiation in lung fibrosis

ZEB1 regulates the expression of tissue plasminogen activator (tPA), encoded by PLAT

		Secreton	ne analysis						·····					LGEA I	analysis
protein.Entr	protein.Accession	protein.Description	Control 1	Control 2	Control 3	Mean Control	40HT_1	40HT_2	40HT_3	Mean 40HT	Present_NumFiles	40HT/Control	t test	P value	fold change
sp	P00750	TPA_HUMAN Tissue-type plasminogen activator OS=Homo sapiens GN=PLAT PE=1 SV=1	0.03805945	0.01625878	1.42580102	0.493373083	5.43590936	3.76467321	3.91557126	4.37205128	3 4	8.86155209	0.0054235	0.0029	62.186
sp	O43665	RGS10_HUMAN Regulator of G-protein signaling 10 OS=Homo sapiens GN=RGS10 PE=1 SV=2	0.03805945	0.01625878	0.07417637	0.042831532	0.99216271	0.780106	0.60354859	0.7919391	3	18.48962817	0.0027397	0.0173	31.993
sp	Q9UBP4	DKK3_HUMAN Dickkopf-related protein 3 OS=Homo sapiens GN=DKK3 PE=1 SV=2	5.93056295	5.83114799	4.56300733	5.441572754	10.0672589	9.12225748	6.76727499	8.65226378	6	1.590029974	0.0405159	0.0016	22.862
sp	P09382	LEG1_HUMAN Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2	26.24369	24.4859987	25.7932936	25.50766077	32.8702499	34.1803729	33.0724352	33.3743527	6	1.30840507	0.0002942	0.0078	21.273
sp	P49006	MRP_HUMAN MARCKS-related protein OS=Homo sapiens GN=MARCKSL1 PE=1 SV=2	0.03805945	0.01625878	0.07417637	0.042831532	1.22915429	0.81883881	1.03388924	1.02729411	3	23.98452876	0.0011912	0.0448	8.948
sp	Q9BUF5	TBB6_HUMAN Tubulin beta-6 chain OS=Homo sapiens GN=TUBB6 PE=1 SV=1	1.59108512	1.6288924	1.70757031	1.642515942	2.42474405	1.99892431	1.96350613	2.12905816	6	1.296217653	0.0329479	0.0085	7.791
sp	Q01813	PFKAP_HUMAN ATP-dependent 6-phosphofructokinase_platelet type OS=Homo sapiens GN=PFKP PE=1 SV=2	1.41330745	1.34007068	0.99123851	1.248205545	2.99812274	2.50893872	2.45329649	2.65345265	6	2.12581386	0.0029099	0.0103	4.928
sp	O00154	BACH_HUMAN Cytosolic acyl coenzyme A thioester hydrolase OS=Homo sapiens GN=ACOT7 PE=1 SV=3	5.52472907	4.71961366	5.08920541	5.111182716	7.68256975	8.53283108	7.77277898	7.99605994	6	1.564424592	0.0012627	0.0157	4.724
sp	Q16643	DREB_HUMAN Drebrin OS=Homo saplens GN=DBN1 PE=1 SV=4	1.28240299	1.27421348	0.07417637	0.876930945	2.36175646	2.03966836	1.9269384	2.10945441	5	2.405496598	0.0432139	0.0027	4.643
sp	P08727	K1C19_HUMAN Keratin_ type I cytoskeletal 19 OS=Homo saplens GN=KRT19 PE=1 SV=4	16.5180996	12.9025304	16.2798462	15.23349207	23.4078944	23.8995049	26.3436831	24.5503608	6	1.611604266	0.003245	0.0206	4.214
sp	O95865	DDAH2_HUMAN N(G)_N(G)-dimethylarginine dimethylarninohydrolase 2 OS=Homo sapiens GN=DDAH2 PE=1 SV=1	0.03805945	0.59171003	0.07417637	0.234648615	1.22556913	3.90442274	4.6763973	3.26879639	4	13.93060167	0.0459206	0.0237	3.299
sp	P08729	K2C7_HUMAN Keratin_ type II cytoskeletal 7 OS=Homo sapiens GN=KRT7 PE=1 SV=5	4.32725875	4.56625134	3.79641725	4.229975778	7.48748748	8.05830553	8.50840587	8.01806629	6	1.8955348	0.0005285	0.0013	3.216
sp	Q9NVA2	SEP11_HUMAN Septin-11 OS=Homo sapiens GN=SEP111 PE=1 SV=3	1.57415868	1.13117274	0.97297195	1.226101122	2.2307126	3,16447689	2.8112982	2.7354959	6	2.231052436	0.0098376	0.004	2.985
sp	Q16555	DPYL2_HUMAN Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1	2.68078712	2.34254329	2.10650798	2.376612799	3.84755891	3.69629067	4.17248673	3.90544543	6	1.643282169	0.0021756	0.009	2.707
sp	Q96HC4	PDLI5_HUMAN PDZ and LIM domain protein 5 OS=Homo sapiens GN=PDLIM5 PE=1 SV=5	0.03805945	0.01625878	0.07417637	0.042831532	1.42312393	1.51615911	1.08566335	1.34164879) 3	31.32385725	0.000596	0.0108	2.637
sp	P14618	KPYM_HUMAN Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE=1 SV=4	34.1364177	34.2956157	41.1210583	36.51769721	44.7813329	41.5010682	46.4058265	44.2294092	6	1.211177391	0.046935	0.018	2.134
sp	Q15942	ZYX_HUMAN Zyxin OS=Homo saplens GN=ZYX PE=1 SV=1	4.62041663	5.84959897	4.55543831	5.008484634	7.11327073	6.31643212	7.42846302	6.95272195	i 6	1.388188736	0.0221407	0.0048	2.119
sp	P33316	DUT_HUMAN Deoxyuridine 5'-triphosphate nucleotidohydrolase_mitochondrial OS=Homo sapiens GN=DUT PE=1 SV=4	0.66413732	0.01625878	1.08337868	0.587924926	3.09795096	1.77269097	2.29507769	2.38857321	1 5	4.062718048	0.0219907	0.0262	2.049
sp	Q9H299	SH3L3_HUMAN SH3 domain-binding glutamic acid-rich-like protein 3 OS=Homo sapiens GN=SH3BGRL3 PE=1 SV=1	10.6936023	11.6126062	10.6132761	10.97316155	13.5005461	13.5527846	12.8667001	13.306677	6	1.212656616	0.0038884	0.0329	1.971
sp	Q9HA64	KT3K_HUMAN Ketosamine-3-kinase OS=Homo sapiens GN=FN3KRP PE=1 SV=2	0.03805945	0.01625878	0.07417637	0.042831532	0.8801573	1,3146447	1.45076137	1.21518779	3	28.3713361	0.0024689	0.011	1.845
sp	P35237	SPB6_HUMAN Serpin B6 OS=Homo sapiens GN=SERPINB6 PE=1 SV=3	1.84898793	2.04193852	1.8771163	1.922680918	2.79704459	2.88861106	3.64011849	3.10859138	6	1.616800455	0.0123326	0.0399	1.781
sp	P67936	TPM4_HUMAN Tropomyosin alpha-4 chain OS=Homo sapiens GN=TPM4 PE=1 SV=3	6.7261055	6.07247215	7.76056393	6.853047193	9.1039629	8.09742761	8.41492282	8.53877111	6	1.245981659	0.0425782	0.0447	1.718
sp	P15311	EZRI_HUMAN Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4	24.1979949	22.4183019	21.3273715	22.64788942	26.6794785	30.7285466	30.7930708	29.4003653	6	1.298150337	0.0133946	0.0204	1.679
sp	O14907	TX1B3_HUMAN Tax1-binding protein 3 OS=Homo sapiens GN=TAX1BP3 PE=1 SV=2	0.03805945	0.01625878	0.07417637	0.042831532	1.88357001	4.36947595	4.53555723	3.59620106	3	83.96153243	0.0143496	0.0023	1.585
sp	043707	ACTN4_HUMAN Alpha-actinin-4 OS=Homo saplens GN=ACTN4 PE=1 SV=2	24.6135439	25.0097507	25.5202034	25.04783267	32.0447354	30.9006059	34.5628056	32.5027156	5 6	1.297625869	0.0025856	0.0246	1.507

Global transcriptomic changes in fibroblasts exposed to conditioned media from RAS-activated ATII cells

regulation of cell migration	negative regulation of cell migration cell migration		negative gulation of comotion	regulation of cellular response to growth factor stimulus response to growinflamma binding	cytokine binding cytokine cytokine tory factor transforming	insforming with factor a receptor gnaling athway platelet-derived growth factor powth factor signaling pathway platelet-derived growth factor signaling pathway	regulation of co differentiation	negativ ell regulatio of cell differentia	negative regulation of cell differentiation	
regulation of locomotion	positive regulation of cell migration		of migration	negative regulation of cellular response to growth factor stimulus	growth factor beta cellular response to growth factor stimulus	of insulin–like growth factor pathway esponsient to cytokine discolast growth factor receptor signaling pathway regulation of fibroblast growth factor receptor signaling pathway	positive regulation of cell differentiation	cell differentia	I differentiation	
extracellu	extracell orgar	ular matrix hization	collagen binding	regulation of ce	II proliferation	n positive regulation of cell proliferation	cell adhesion	regulation of cell adhesion	lammatory response	
extracellular matrix structural constituer		ular matrix constituent	extracellular matrix binding collagen trimer	negative reg cell prolif	julation of eration	cell proliferation	regulation of cell adhesion	gative ulation of ul-cell binding	gulation of Jammatory response	

ZEB1 is up-regulated in IPF samples

Figure 4

RAS-activated ATII cells augment fibroblast migration via paracrine signalling

RAS-activated ATII cells augment fibroblast migration via paracrine signalling

PLAT RNAi

Idiopathic pulmonary fibrosis (IPF)

- A progressive fibrotic disease limited to the lungs
- > 5000 cases/year (UK)
- Incidence is increasing
- Median survival from time of diagnosis 3 years

IPF fibroblasts induce RAS activation in ATII cells

SPARC, a TGF-β-induced secreted protein, is highly expressed in IPF.

Secretome

SPARC is a key fibroblast-derived paracrine regulator of RAS activation in ATII cells

Cell Death Discovery

ARTICLE

Paracrine SPARC signaling dysregulates alveolar epithelial barrier integrity and function in lung fibrosis

Franco Conforti (12, Robert Ridley¹, Christopher Brereton (12, Aiman Alzetani¹⁴, Benjamin Johnson⁵, Ben G. Marshall²⁴, Sophie V. Fletcher²⁴, Christian H. Ottensmeier⁴⁵, Luca Richeld¹²⁶, Paul Skipp⁷, Yihua Wang 1989, Mark G. Jones (21,24 and Donna E. Davies 1,28

Cell Death & Cell Death Cell Death Differentiation Discovery & Disease

Cell Death & Offerentiation https://doi.org/10.1038/44148-018-0175-7

Paracrine signalling during ZEB1-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in lung fibrosis

Liudi Yao¹ - Franco Conforti^{2,3} - Chafotte Hill¹ - Joseph Bell² - Leena Drawater¹ - Juanjuan Li¹ - Dian Liu⁴ -Hua Xiong¹ - Alman Alzetani^{3,10} - Serena J. Chee^{5,6} - Ben G. Marshall^{3,5} - Sophie V. Fletcher^{3,5} - David Hancock⁷ -Mark Coldwell¹ - Xianglin Yuan⁴ - Christian H. Ottensmeier⁶ - Julian Doward ¹ - Jane E. Collins² -Rob M. Ewing¹ - Luca Richeldi^{3,28} - Paul Skipp^{1,9} - Mark G. Jones ¹ - Sonna E. Davier^{2,21,11} - Yihua Wang ¹ - ¹

۲

BC RESEARCH ARTICLE

Bidirectional epithelial-mesenchymal crosstalk provides self-sustaining profibrotic signals in pulmonary fibrosis

Received for publication, June 10, 2021, and in revised form, August 6, 2021 Published, Papers in Press, August 18, 2021, https://doi.org/10.1016/j.jbc.2021.101096

Liudi Yao¹, Yilu Zhou^{1,2}, Juanjuan Li¹, Leanne Wickens^{14,5}, Franco Conforti^{1,5}, Anna Rattu¹, Fathima Maneesha Ibrahim¹, Aiman Alzetan^{5,6}, Ben G. Marshal^{6,6}, Sophie V. Fletcher^{6,6}, David Hancock⁷, Tim Wallis^{5,6}, Julian Downward⁷, Rob M, Ewing^{1,2}, Luca Richeldi^{1,5,8}, Paul Skipp^{1,2,3}, Donna E. Davies^{3,4,5}, Mark G. Jones^{1,6,6,6}, and Yihua Wang^{1,2,5,6}

211

Autophagy

Iditor in Chief

AUTOPHAGY 2019, VOL. 15, NO. 5, 886–899 https://doi.org/10.1080/15548627.2019.1569912

RESEARCH PAPER - TRANSLATIONAL

Autophagy inhibition specifically promotes epithelial-mesenchymal transition and invasion in RAS-mutated cancer cells

Yihua Wang ^{a,b,c,d}, Hua Xiong^a, Dian Liu^a, Charlotte Hill^b, Ayse Ertay^b, Juanjuan Li^b, Yanmei Zou^a, Paul Miller ^d, Eileen White^e, Julian Downward ^f, Robert D Goldin ^g, Xianglin Yuan^a, and Xin Lu ^d

Mark G. Jones^{34,10} and Yihua Wang^{12,10}

Autophagy inhibition induces EMT via NF_KB-Snail2 pathway.

Medical Research Council

Lab members:

Liudi Yao; Charlotte Hill; Yilu Zhou; Ayse Ertay; Zijian Xu, Hualong Zhao; Siyuan Wang; Beatriz Valdez Moreno; Tao Guo; Elizabeth Davies; Juanjuan Li

Collaborators:

IPF – Prof Donna Davies; Dr Mark Jones

PTEN and RAS signalling – Prof Julian Downward

Proteomics and bioinformatics - Prof Paul Skipp; Dr Rob Ewing

Autophagy - Prof Xin Lu; Prof Eileen White; Dr Andrew Steele

Hypoxia – Prof Sir Peter Ratcliffe; Prof Christopher Schofield; Prof Xin Lu; Prof Ali Tavassoli

Colleagues in China (Dr Dian Liu; Dr Hua Xiong)

